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By W. Prager
SUMMARY

General ways of testing thin-well tubes wmder combined tension and
torsion as a means of checking the various theories of plasticity are
discussed. Suggestions also are given for the interpretation of the
tests.

INTRODUCTION

‘' Combined torsion and temnsion (or compression) of thin-wall tubes
constitutes one of the few testing arrangements in which a fairly gensral
state of uniform stress cen be realized without too great experimental
difficulties. It is not surprising, therefore, that this errangement
has been frequently used to check the various theoriss of plasticity.
(See, for instence, referemnces 1 to 5.) Unfortunately, such combined
tension and torsion tests are often conducted so as to keep the ratio
of axiel load and torque constant during sny one test. In this case,
the directions of the principal stresses as well as the ratios of their
intensities are preserved during the plastic deformetion, and verious
theories of plasticity furnish identicel predictions. Tests of this
particuler type therefore do not provide a check of these theoriles.

In the present psper, more general ways of testing thin-wall tubes
under combined tension end torsion ere discussed, and suggestions are
given for the Interpretetion of such tests.

TEECORIES OF PLASTIC DEFORMATION AND PLASTIC FLOW

In the mathematical theory of plasticity two kinds of stress-strain
relations are currently used to describe the mechanical behavior of
quasi~isotroplc metals in the strain-hardening renme. In this paper,
the theories of these two groups are called theorlies of plastic deformatlon
and theories of plastic flow, following an apt provosal of A. A. Ilyushin
(reference 6). A recent peper by G. H. Hendelman, C. C. Lin, and W. Prager
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(reference 7) contains a detailed discussion of the general stress-strain
reletions of these theorles; the present discussion can therefore be
restricted to the special case of combined tension snd torsion of thin-
wvall tubes.

The stress-strain relation of a theory of plastic deformation
establishes a one-to-one correspondence between the instantesneous states
of stress and strain. The stress-strein relation of a theory of plastic
flow, on the other hend, establishes a one-to-one correspondence between
the infinitesimel increments of stress and strain when the instantaneous
state of stress is known. A stress-strain relation of this kind will
therefore conteln the lnstanteneous stress components in addition to
the differentials of the components of strese end strain; 1t must, of
course, be homogeneous in these differentials, and if there is to be
a one-to-one correspondence between the differentiales of stress and
strain, the stress-strain relation must be linear in these differentials.
It is often convenlent to avold differentials by replacing them by the
first derivetives of the components of stress and strain with respect to
tine. When written in this form, the stress-strain relations of the
theories of plastic flow appear as linear forms in the time rates of—
change of stress and strain with coefficlients which depend on the
instantaneous stress. It is importent to remark, however, that these
stress-stralin relations do not represent any viscosity effects in spite
of the appearence of the rates of stress and strain. In fact, since
these rates appear In a homogeneous form, the relation between stresses
and strains is not affected by esmn erbitrary distortion of the time
scale; accordingly, time enters only as a pesrsmeter which is convenlent
for the detailed description of the loeding process. If the loads
applied to a plastic body very in such a memmer that there is at least
one loed vwhich always varies when the other loads very, the intensity
of this load may be used as a measure of btime.

If the stress-strain relations of a theory of plastic deformation
are differentiated with respect to time, the resulting relations will
also be linear snd homogeneous in the time derivatives of stress and
strain, snd hence resemble the stress-straln relations of the tteory of
plastic flow. However, the stress-strain relstions obteined in this
memner, while involving the time derivatives of stress end strain, can
be integrated with respect to time. The stress-strain relations of the
theories of plastic flow, on the other hemd, are not supposed to be
integrable in this manner.

DEVIATIONS OF STRESS AND STRAIN - POWERS
AND INVARIANTS OF THE STRESS DEVIATION

In the following discussion, the symbols are defined as

R mean rediues of- tubular test specimen
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w wall thickness of test specimen

P axial force

T torque

o axisl stress (P /2xRw)

T shearing stress (T/Qﬂ%)

€ unit extension in axial direction

ns* unit contractions in circumferential and
radial directions, respectively

e angle of twist per unit length

¥ shearing strain (R6/2)

For convenience, the axiel force P and the exial stress o ere assumed
to represent temsion in the present paper. In the case of compression,
the signs of P end o must be changed In all formulas. Also, contrary
to present engineering practice, the shearing strain is defined herein
as RO/2 rather then RO. This is necessery if unduly complicated
formulas ere to be avoided.

With the symbols as defined, the tensors of stress end strain are
glven by ’

c T 0 € 4 0
T 0 O end y =~ 0 (1)
0O 0 o© 0O 0 -n*

The meen normel stress equals o/3, and the mean normel strain,
1

=(e - - n¥*

3(6 n - n%). .

The deviations of stress and strain are obtained by subtracting o'l/3
and (e - q - ﬂ*)l/3. from the tensors of stress and strain, regpectively,
where i

1 0 O

I=J0 1 o (23
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(Thus, - | e
20 /3 T 0 -

S=|T ~-6/3 o |- (3)

0 0 -o/3
and -
(26 + 1 + %) /3 7 | 0
E = 7 -(e+2q - ¥)/3 0 (1)
0 0 - (€ -n+2n%)/3

are the deviations of stress and strain. In the present paper, underscoring
is used tc indicate tensors.

The square of the stress deviation is obtained by squaring eguation (3):

%2/9 + 72 or/3 0 .
_ F = o71/3 o?/9 + 12 0 (5)
0 0 o@/9 ’
Similerly, : : -
803/27 + g0 01'2/3 + 3 o)
g3 = | or/3+ -o3/27 0 (6)
0 0 ~93/27

As is well known, the traces of the tensors §= and 53 (i.e., the
sums of the terms in the principal diegonals) are independent of the
Partiouler Cartesian coordinete system to which these tensors may be
referred. It will be convenlent to define as tlsxg second~ and third-
order invarients of $ one-half the trace of S~ and one-third the

trece of §j>'_3, respectively?

J-%'_02+T2 (7)
K-—?—c3 + L 542 (8)
27 3

Inspection of equetions (3), (5), (6), (7), and (8) shows that
53 =d5+ KL (9)
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This is the special form which the Hamllton-Ceyley theorem (reference 8)
agsumes for the stress deviation. Because of this relation, the third
end all higher powers of S can be expressed in terms of S, S, eand
powers of the inverients J eamd K, as is seen by multiplying equation (9)
repeatedly by S and using equation (9) to reduce the right-hend sides
of the resulting equations.

REVERSIBLE AND PERMANENT STRAINS - LOADING AND UNLOADING

The theories of plastic deformation as well as those of plastic
flow assume the total strain to be the sum of a reversible and a
permanent component, often called elastic end plastic strains. Within
the elastic range, the permeament strains vanish and all strains are
reversible. Once the elestic limlt has been exceeded, complets unloading
of -a test specimen, which has been under a state of homogeneous stress,
will reveal the permanent or plastic strain associated with thils state
of stress. That component of strain which disevpesrs durilng the wmloading
process 1s the reversible or elastic strain.

It is generally esssumed that each of these two components of strain
is releted to the stress in a mammer which does not involve the other
component. TIn perticular, the reversible strain is assumed to be related
to the streses by meens of the generalized law of Hooke. Moreover, 1t
is generslly assumed that all changes of volume are completely reversible,
so that the permanent strain involves a chenge of shape but no chenge
of volume.

In the following discr:lussion, reversible and permenent strains will
be indicated by ' and =, respectively. The assumptions Just stated

are then expressed by the followlng equations:
-
€' = fv3 /E o

T]'l:n*

= 'l)oe' L (10)

t

= Vo0 [Eq
y' = 1/2G,

+ %' = (11)

~» end v, denote the values of Young's modulus, shear
modulus, and Poisson's ratio in the elastic range. Since

where E,, G,

E, = 26,(1 + v,) (12)
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subetitution of eguation (10) into equation (%) and comparison with
equation (3) yield

E' = 5/06G, (13)
The permenent strain is therefore givem by
E'=E-E'

=E - 5/26, (1k)

Reference to equations (3) and (4) shows equation (14) to yield only three
independent scalar equations. Together with e%uation ( 11), these three
equations permit the permanent strains s", LY n*", and 7" to Dbe
computed from the measured totel strains €, n, n%, 7 end the

stresses g end T; they are

1
th ._3(2' + n + n*) - ?—g’—o (15)
1 1 g
--§(€+21]-f]*)+§cf° _ (16)
and
' n T
- - w— 1
LA (1T}

Before specific stress~streln relations can be formulated, a
criterion for loading and unloading must be adopted. In the case of
simple temsion or compression, loading corresponds to an increase in o
end unloading, to & decrease. For the more general states of stress
considered herein, it will be assumed that loading corresponde to ean
increase of the inverient J (equation (7)) end umloading, to a decrease.
Thus, for loading,

2

%ua+f+>o (18)
and for unloading,
%c&+ T+ <0 | (19)

where the dots denote differentiation with respect to time.
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STRESS~STRATN RELATTONS

Discussing theories of plastic deformation, W. Prager (reference 9)
esteblished the most general stress-strein relatlon which is competible
with certaln simple postulates. A useful transformetion of this stress-
strain relation is found 1n section 5 of reference T. With

o = K2/33 (20)

J1> (21)

thls stress-stralin reletion mey be written in the form
2GoE" = £(3,0) [+ B(a)T] (22)

For combined tension end torsion of thin-wall tubes, equation (22)
may be further trensformed as follows. According to equation (20),

PR+ 9r2)2

end

w o

T:.E— 82-
= J_a..

27(c2 + 2r2)3
2
- "2(2"2 ) (23)
27(p= + 3)3
where
p=oc/r (24)
Moreover, . .
T =2 (3P
2
‘ s‘r? (p® + 3) (25)

The function £(J,a) .can therefore be considered as a function of 7
and p

£(J,a) = @(t,p) (26)
Similerly, the function B(a) can be considered as a function of p:

B(a) = ¥(p) (27)
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Equetion (22) may thus be writtem in the form:

262" = o(7,0) [5+ ¥o)T] (28)
wvhere
202/ + 1/3 o/3 0
T = T 2!22541:21 0/3 - 2/9 + 1/3 0 (29)
3(p2 + 3)2
0 0 - 02f9 - 2/3

The functions ¢ and ¥ can be determined by & serles of tests
during each of which the value of p 1is kept-constent. According to
equation (28), the ratio ¢'/y" will remain constent during each of
these tesis:

¢" _60(o% + 3)2 + 3p(20° + 9)(262/9 + 1/3) ¥(p)

30
7' 9(o= + 3)2 + p=2(20° + 9) ¥(p) (30)
Each observed value of e"/y" corresponding to a certain value of o
therefore furmishes the value of ¥ for this value of ¢p-.
After w(p) hes been obtained, the function @(r,p) cen be
determined from the shear component of equation (22):
2G'07“ 2 2 2 .
- o(r,0) |1+ y(p) 228+ 9) (31)

9(p? + 3)2

The bracketed term on the right-hend side of this equation depends only
on p and thus remains conetant during each of the aforementioned tests.
A graph of the function o(r,p) for the particular velue of p which is
meintained constant during the teest 1s therefore obtained by plotting

1847 "(p2 + 3)2

<P(,)"
i 1[92 + 3)2 + o2(20% + 9) y(p)]

(32)
egainst +r. Here, 7" must be computed from the observed shearing
strain 7 in accordance with equation (17).

As regards the theories of plastic flow, the differential stress-
strain relation which is amalogous to equation (23) has the form

26,38" = o(7,0) [8+ ¥(p)T] a5 (33)

If o(r,p) and ¥(p) are glven, the fumection &(r,p) cen be determined
so that equations (28) and (33) predict the same mechenical behavior for
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any test during which o 18 kept constent. During such a test, o = o7,
and hence

dg = p 4T )
= g dt /T
a8 = 8 dr/r (3k)
4T = T ar/T
aJ = 27 ar/+ J
Equation (28) thus yields
2G, ag" -(%’i +2_;_-> (s + ¥1) ax (35)
while equation (33) furnishes
2G, ag" = 20 L (5 + ¥I) ar (36)

On account of eguation(?‘j) , comparison of equations (35) end (36) yields

=3 @+2> (37)

21(p2 + 3)\31 T
SUGGESTED TEST

If the functions ¢ and @ are related to each other by means
of equation (37), the stress-strain relations,equations (28) and (33)
furnish the same prediction for any test during which p 1is kept
constant. A decision between the theories of plastic deformation end
Plestic flow therefore requires more general tests during which p 1is
allowed to very. For mild steel with negligible strain hardening such
tests have been made by K. Hohenemser and W. Prager (reference 3); for
meterials with pronounced strain hardening, however, systemetic tests of
this kind do not seem to have been carried out as yet. A possible
method by which these tests could be carried out 1s given in the following
discussion.

A declsive difference between the two kilnds of theory of plastic
action is revealed in a test iIn which simple torsion is followed by
tension during which the torgque 1s meinteined constent. At the instant
of begionning tension ¢ = O and thereafter dr = 0. Accordingly,

d.J=—23—-(UdO'+3Td-T)=O (38)
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at this instant, and equation (33) yields
ae" = 0 (39)

According to the theories of plastic flow, the initial velue of the

retio do/ie should therefore equal Young's modulus E, quite independently
of the precise form of the functions ¢ and V. According to the

theories of plastic deformation, on the other hand,

2G,3E" = (8 + ¥T) ap + @(a8 + ¥ 4T + T a¥) (ko)

Now, at the instant of begimming temsion o = 0, that is, p = 0, and
thereafter dr = 0, that is, dp = do/r. Thus, the following normal
camponents in the direction of the exis of the tuhe are obtained:

-

s)o

T)O S (41)

Equation (40) yields then
9B, de" = o(r,0) (L + v)) [6+ ¥(0)] o (42)

vhere G __hqg been replaced by its velue from equation (12). Since
de' = do/E, end de = d¢' + de",

do 9E
i€ "9+ o(r,0) (1~ go) B + ¥(o} (43)

Similerly,

G
de¢ . o (hi)
dr 3/

Since the functions ¢ end ¥ can be determined from the tests

described in the preceding section, the right-hand sides of equations (43)

end (44) cen be computed as finctions of Tt and cquation (28) can be
checked by experiment.

Brown University -
Providence, R. I., March 26, 1947
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